Existence of Optimal Policies for Semi-Markov Decision Processes Using Duality for Infinite Linear Programming
نویسندگان
چکیده
Semi-Markov decision processes on Borel spaces with deterministic kernels have many practical applications, particularly in inventory theory. Most of the results from general semi-Markov decision processes do not carry over to a deterministic kernel since such a kernel does not provide “smoothness.” We develop infinite dimensional linear programming theory for a general stochastic semi-Markov decision process. We give conditions, general enough to allow deterministic kernels, for solvability and strong duality of the resulting linear programs. By using the developed linear programming theory we give conditions for the existence of a stationary deterministic policy for deterministic kernels, which is optimal among all possible policies.
منابع مشابه
Duality and Existence of Optimal Policies in Generalized Joint Replenishment
We establish a duality theory for a broad class of deterministic inventory control problems on continuous spaces that includes the classical joint replenishment problem and inventory routing. Using this theory, we establish the existence of an optimal policy, which has been an open question. We show how a primal-dual pair of infinite dimensional linear programs encode both cyclic and non-cyclic...
متن کاملA New Approach for Approximating Solution of Continuous Semi-Infinite Linear Programming
This paper describes a new optimization method for solving continuous semi-infinite linear problems. With regard to the dual properties, the problem is presented as a measure theoretical optimization problem, in which the existence of the solution is guaranteed. Then, on the basis of the atomic measure properties, a computation method was presented for obtaining the near optimal so...
متن کاملA Linear Programming Approach to Nonstationary Infinite-Horizon Markov Decision Processes
Nonstationary infinite-horizon Markov decision processes (MDPs) generalize the most well-studied class of sequential decision models in operations research, namely, that of stationaryMDPs, by relaxing the restrictive assumption that problem data do not change over time. Linearprogramming (LP) has been very successful in obtaining structural insights and devising solutionmeth...
متن کاملA linear programming approach to constrained nonstationary infinite-horizon Markov decision processes
Constrained Markov decision processes (MDPs) are MDPs optimizing an objective function while satisfying additional constraints. We study a class of infinite-horizon constrained MDPs with nonstationary problem data, finite state space, and discounted cost criterion. This problem can equivalently be formulated as a countably infinite linear program (CILP), i.e., a linear program (LP) with a count...
متن کاملA new solving approach for fuzzy multi-objective programming problem in uncertainty conditions by using semi-infinite linear programing
In practice, there are many problems which decision parameters are fuzzy numbers, and some kind of this problems are formulated as either possibilitic programming or multi-objective programming methods. In this paper, we consider a multi-objective programming problem with fuzzy data in constraints and introduce a new approach for solving these problems base on a combination of the multi-objecti...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- SIAM J. Control and Optimization
دوره 44 شماره
صفحات -
تاریخ انتشار 2006